blackjax.sgmcmc.sgld#
Public API for the Stochastic gradient Langevin Dynamics kernel.
Functions#
|
|
|
Stochastic gradient Langevin Dynamics (SgLD) algorithm. |
|
Implements the (basic) user interface for the SGLD kernel. |
Module Contents#
- as_top_level_api(grad_estimator: Callable) blackjax.base.SamplingAlgorithm [source]#
Implements the (basic) user interface for the SGLD kernel.
The general sgld kernel builder (
blackjax.sgmcmc.sgld.build_kernel()
, alias blackjax.sgld.build_kernel) can be cumbersome to manipulate. Since most users only need to specify the kernel parameters at initialization time, we provide a helper function that specializes the general kernel.Example
To initialize a SGLD kernel one needs to specify a schedule function, which returns a step size at each sampling step, and a gradient estimator function. Here for a constant step size, and data_size data samples:
grad_fn = blackjax.sgmcmc.gradients.grad_estimator(logprior_fn, loglikelihood_fn, data_size)
We can now initialize the sgld kernel and the state:
sgld = blackjax.sgld(grad_fn)
Assuming we have an iterator batches that yields batches of data we can perform one step:
step_size = 1e-3 minibatch = next(batches) new_position = sgld.step(rng_key, position, minibatch, step_size)
Kernels are not jit-compiled by default so you will need to do it manually:
step = jax.jit(sgld.step) new_position, info = step(rng_key, position, minibatch, step_size)
- Parameters:
grad_estimator – A function that takes a position, a batch of data and returns an estimation of the gradient of the log-density at this position.
- Return type:
A
SamplingAlgorithm
.